CHAPTER 4

THE KARNAUGH-VEITCHMAP

Karnaugh Maps (K-Maps)

- Alternate representation of a truth table
$>$ Red decimal $=$ minterm value
- Note that A is the MSB for this minterm numbering
$>$ Adjacent squares have distance $=1$
- Valuable tool for logic minimization
>Applies most Boolean theorems \& postulates automatically (when procedure is followed)

K-maps

- Alternate forms of 3-variable K-maps
$>$ Note end-around adjacency
- Distance $=1$
- Note: A is MSB, C is LSB for minterm 00 numbering
form 1

K-Maps

- The number of cells in a Karnaugh map is equal to the total number of possible input variable combinations as is the number of rows in a truth table.
- For two variables, the number of cells is $2^{2}=4$.
- For three variables, the number of cells is $2^{3}=8$.
- For four variables, the number of cells are $2^{4}=16$.

K-mapping and Minimization steps

Step 1: generate K-map
$>$ Put a 1 in all specified minterms
$>$ Put a 0 in all other boxes (optional)
Step 2: group all adjacent 1 s without including any 0 s
$>$ All groups (aka prime implicants) must be rectangular and contain a "power-of-2" number of 1 s

- $1,2,4,8,16,32, \ldots$
> An essential group (aka essential prime implicant) contains at least 1 minterm not included in any other groups
- A given minterm may be included in multiple groups

Step 3: define product terms using variables common to all minterms in group
Step 4: sum all essential groups plus a minimal set of remaining groups to obtain a minimum SOP

K-mapping example

- $\mathrm{Z}=\Sigma_{\mathrm{A}, \mathrm{B}, \mathrm{C}}(1,3,6,7)$
$>$ Recall SOP minterm implementation
- 8 gates
- 27 gate I/O
$>$ K-map results
- 4 gates
- 11 gate I/O

implicants

				Row value
0	B	C	Z	0
0	0	0		
0	0	1	1	1
0	1	0	0	2
0	1	1	1	3
1	0	0	0	4
1	0	1	0	5
1	1	0	1	6
1	1	1	1	7

Determining the Minimum SOP Expression from the Map

- 1. Group the cells that have 1s.
- 2. Determine the minimum product terms for each group.
- For a 3-variable map:
- (1) A 1-cell group yields a 3-variable product term
- (2) A 2-cell group yields a 2-variable product term
- (3) A 4-cell group yields a 1-variable term
- (4) An 8-cell group yields a value of 1 for the expression
- For a 4-variable map
- ?
- For a 5-variable map
- ?
- 3. When all the minimum product terms are derived from the Karnaugh map, they are summed to form the minimum SOP expression.

EXAMPLE

\square Simplify the Boolean expression:

- $F(x, y, z)=\Sigma(0,1,6,7)$

$$
F=x^{\prime} y^{\prime}+x y
$$

EXAMPLE:

- Simplify the Boolean expression: $F(x, y, z)=\Sigma(0,2,5,7)$

$$
F=x^{\prime} z^{\prime}+x z
$$

EXAMPLE:

- Group the 1's in each of the following Karnaugh maps
- The groups $y^{\prime} z^{\prime}+y z^{\prime}$ should be added to be one group z^{\prime} :

$$
F=x^{\prime} y^{\prime} z^{\prime}+x z+y z
$$

$$
F=y^{\prime} z^{\prime}+x^{\prime} y^{\prime}+x y+y z^{\prime}
$$

More Examples

Minimize the following SOP expression,

$$
\begin{array}{llll}
=F(x, y, z)=\Sigma(0,2,6,7) & \rightarrow & 1 \\
-F(x, y, z)=\Sigma(0,2,3,4,6) & \rightarrow & 2 \\
=F(x, y, z)=\Sigma(0,1,2,3,7) & \rightarrow & 3 \\
=F(x, y, z)=\Sigma(3,5,6,7) & \rightarrow & 4 \\
=F(x, y, z)=\Sigma(0,1,5,7) & \rightarrow & 5 \\
-F(x, y, z)=\Sigma(0,1,6,7) & \rightarrow & 6 \\
=F(x, y, z)=\Sigma(1,2,3,6,7) & \rightarrow & 7
\end{array}
$$

Solutions

Solution

- $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,2,6,7) \quad \rightarrow \quad 1$

Solutions

- Solution

$$
F(x, y, z)=\Sigma(0,2,3,4,6) \quad \rightarrow \quad 2
$$

$$
\text { F = z' }+\mathbf{x} \mathbf{\prime} \mathbf{y}
$$

Solutions

- Solution

$$
F(x, y, z)=\Sigma(0,1,2,3,7) \quad \rightarrow \quad 3
$$

Solutions

- Solution
$F(x, y, z)=\sum(3,5,6,7) \quad \rightarrow \quad 4$

Solutions

5. $F={\underset{x}{x}}_{z^{\prime}} y^{\prime}+x z$

7. $F=y+x^{\prime} z$

4-variable K-Map

- Note adjacency of 4 corners as well as sides
- Variable ordering for this minterm numbering: ABCD

form 1

form 2

EXAMPLE:

KARNAUGH MAP PRODUCT OF SUM (POS) SIMPLIFICATION

- If we mark the empty squares by 0's and combine them into valid adjacent squares, we obtain a simplified expression of the complement of the function, i.e., of F^{\prime}.
- The complement of F^{\prime} gives us back the function F.
- Because of Demorgan's theorem, the function so obtained is automatically in the product of sums form.

EXAMPLE

- Simplify the following Boolean function in (a) sum of products and (b) product of sums.
- $F(w, x, y, z)=\Sigma(0,1,2,3,10,11,14)$
- The group $x y^{\prime}$ is redundant and should be removed

$$
F=w^{\prime} x^{\prime}+x^{\prime} y+w y z^{\prime}
$$

$$
\begin{aligned}
& \mathbf{F}^{\prime}=w y^{\prime}+x y^{\prime}+x z+w^{\prime} x \\
& F=\left(w^{\prime}+y\right)\left(x^{\prime}+y\right)\left(x^{\prime}+z^{\prime}\right)\left(w+x^{\prime}\right)
\end{aligned}
$$

EXAMPLE

- Use a Karnaugh map to minimize the following POS expression.
- $(x+y+z)\left(w+x+y^{\prime}+z\right)$
($w+x+y+z$)
$\left(w+x^{\prime}+y+z\right)$
($w^{\prime}+x^{\prime}+y+z$)
ㅁ $(w+x+y+z)(w '+x+y+z)($ $\left.w+x+y^{\prime}+z\right)\left(w^{\prime}+x+y+z^{\prime}\right)$
$\left(w+x^{\prime}+y+z\right)\left(w^{\prime}+x^{\prime}+y+z\right.$

5-Variable K-Map

- Note adjacency between maps when overlayed $>$ distance $=1$
- Variable order for this minterm numbering: $>\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}(\mathrm{A}$ is MSB, E is LSB)

DON'T CARE CONDITIONS

- Sometimes input combinations are of no concern
$>$ Because they may not exist
- Example: BCD uses only 10 of possible 16 input combinations
$>$ Since we "don't care" what the output, we can use these "don't care" conditions for logic minimization
- The output for a don't care condition can be either 0 or 1 \checkmark WE DON'T CARE!!!
- Don't Care conditions denoted by:
$>\mathrm{X},-\mathrm{d}, 2$
- X is probably the most often used
- Can also be used to denote inputs
$>$ Example: $\mathrm{ABC}=1 \mathrm{X} 1=\mathrm{AC}$
- B can be a 0 or a 1

Example

- Truth Table
- K-map
- Minterm

$$
>Z=\Sigma_{A, B, C}(1,3,6,7)+d(2)
$$

- Maxterm
$>Z=\Pi_{A, B, C}(0,4,5)+d(2)$ $\mathrm{Z}=\mathrm{B}+\mathrm{A}^{\prime} \mathrm{C}$
- Notice Don't Cares are same for both minterm \& maxterm

Circuit analysis:
$G=3 \quad G_{I O}=8$
(compared to $G=4 \& G_{I O}=11$ w/o don't care)

Example

- Simplify the following Boolean function F, where d represents th set of do not care conditions
- $F(w, x, y, z)=\Sigma$ (0,1,2,8,10,11)
- $d(w, x, y, z)=\Sigma$ $(4,6,12,13)$

QUESTIONS?

